Synthesis of iron-based chemical looping sorbents integrated with pH swing carbon mineral sequestration.

نویسندگان

  • Hyung Ray Kim
  • Dong Hyun Lee
  • Liang-Shih Fan
  • Ah-Hyung Alissa Park
چکیده

The previously developed pH swing carbon mineral sequestration immobilizes the gaseous CO2 into a thermodynamically stable solid, MgCO3, using Mg-bearing minerals such as serpentine. This mineral carbonation technology is particularly promising since it generates value-added solid products: high surface area silica, iron oxide, and magnesium carbonate, while providing a safe and permanent storage option for CO2. By carefully controlling the pH of the system, these solids products can be produced with high purity. This study focuses on the synthesis of iron oxide particles as a chemical looping sorbent in order to achieve the integration between carbon capture and storage technologies. Since the solubility of Fe in aqueous phase is relatively low at neutral pH, the effect of the weak acid and chelating agents on the extraction of Fe from serpentine was investigated. The synthesized iron-based chemical looping sorbent was found to be as effective as commercially available iron oxide nanoparticles at converting syngas into high purity H2, while producing a sequestration-ready CO2 stream.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process

The effect of the physical activation on the dissolution of serpentine was investigated and a pH swing scheme was developed to improve the overall conversion of the CO2 mineral sequestration process. Various methods of the surface agitation such as ultrasound, acoustic, and internal (in-situ) grinding were examined for their effectiveness in removing the diffusion limiting SiO2 layer in order t...

متن کامل

Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process usi...

متن کامل

Progress in carbon dioxide separation and capture: a review.

This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertili...

متن کامل

CO2 multicyclic capture of pretreated/doped CaO in the Ca-looping process. Theory and experiments.

We study in this paper the conversion of CaO-based CO2 sorbents when subjected to repeated carbonation-calcination cycles with a focus on thermally pretreated/doped sorbents. Analytical equations are derived to describe the evolution of conversion with the cycle number from a unifying model based on the balance between surface area loss due to sintering in the looping-calcination stage and surf...

متن کامل

High Purity Hydrogen Production with in-situ CO2 and Sulfur Capture

Enhancement in the production of high purity hydrogen (H2) from synthesis gas, obtained by coal gasification, is limited by the thermodynamics of the water-gas shift reaction (WGSR). However, this constraint can be overcome by concurrent WGSR and carbonation (of calcium oxide) reaction to enhance H2 production. The carbonation of calcium oxide forming calcium carbonate incessantly drives the eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2009